The diversity and domain dependence of time series data pose significant challenges in transferring learning to time series forecasting. In this study, we examine the effectiveness of using a transformer model that has been pre-trained on natural language or image data and then fine-tuned for time series forecasting with minimal modifications, specifically, without altering the self-attention and feedforward layers of the residual blocks. This model, known as the Frozen Pretrained Transformer (FPT), is evaluated through fine-tuning on time series forecasting tasks under Zero-Shot, Few-Shot, and normal sample size conditions. Our results demonstrate that pre-training on natural language or images can lead to a comparable or state-of-the-art performance in cross-modality time series forecasting tasks, in contrast to previous studies that focused on fine-tuning within the same modality as the pre-training data. Additionally, we provide a comprehensive theoretical analysis of the universality and the functionality of the FPT. The code is publicly available at https://anonymous.4open.science/r/Pretrained-LM-for-TSForcasting-C561.


翻译:时间序列数据的多样性和领域依赖性在将学习转移到时间序列预测方面提出了重大挑战。在本研究中,我们研究了使用经过自然语言或图像数据培训前的变压器模型的有效性,然后对时间序列的预测进行了微调,并作了微小的修改,具体地说,没有改变剩余区块的自留和进食性向上层。这一模型被称为FFFT, 是通过对Zero-Shot、Phot-Shot和正常样本大小条件下的时间序列预测任务进行微调来加以评价的。我们的结果表明,在跨现代时间序列预测任务中,对自然语言或图像进行预先培训可导致可比的或最先进的性能,而以前的研究的重点是在与培训前数据相同的模式内进行微调。此外,我们对FPT(FPT)的普遍性和功能进行全面的理论分析。代码可在https://anonymous.4open.science/r/prained-LMfor-TSFOR-C561公开查阅。

0
下载
关闭预览

相关内容

FPT:International Conference on Field-Programmable Technology。 Explanation:现场可编程技术国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/fpt/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
33+阅读 · 2022年2月15日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员