Several researchers have focused on studying driver cognitive behavior and mental load for in-vehicle interaction while driving. Adaptive interfaces that vary with mental and perceptual load levels could help in reducing accidents and enhancing the driver experience. In this paper, we analyze the effects of mental workload and perceptual load on psychophysiological dimensions and provide a machine learning-based framework for mental and perceptual load estimation in a dual task scenario for in-vehicle interaction (https://github.com/amrgomaaelhady/MWL-PL-estimator). We use off-the-shelf non-intrusive sensors that can be easily integrated into the vehicle's system. Our statistical analysis shows that while mental workload influences some psychophysiological dimensions, perceptual load shows little effect. Furthermore, we classify the mental and perceptual load levels through the fusion of these measurements, moving towards a real-time adaptive in-vehicle interface that is personalized to user behavior and driving conditions. We report up to 89% mental workload classification accuracy and provide a real-time minimally-intrusive solution.
翻译:一些研究人员着重研究驾驶者在驾驶时的认知行为和精神负荷,适应性界面与精神和感官负荷水平不同,有助于减少事故,增强驾驶者的经验。在本文件中,我们分析了精神工作量和感官负荷对心理生理层面的影响,并在车辆相互作用的双重任务情景下,为精神和感官负荷估计提供了一个基于机械的学习框架(https://github.com/amrgomaaelhady/MWL-PL-Sestimator )。我们使用可轻易纳入车辆系统的现成非侵入性传感器。我们的统计分析表明,虽然精神负荷影响一些心理生理层面,但感官负荷几乎没有作用。此外,我们通过这些测量的结合,对精神和感官负荷水平进行分类,转向针对用户行为和驾驶条件的实时适应性车辆界面。我们报告高达89%的精神工作量分类精度,并提供实时最低侵入性解决方案。