In multi-agent reinforcement learning (MARL), independent learners are those that do not observe the actions of other agents in the system. Due to the decentralization of information, it is challenging to design independent learners that drive play to equilibrium. This paper investigates the feasibility of using satisficing dynamics to guide independent learners to approximate equilibrium in stochastic games. For $\epsilon \geq 0$, an $\epsilon$-satisficing policy update rule is any rule that instructs the agent to not change its policy when it is $\epsilon$-best-responding to the policies of the remaining players; $\epsilon$-satisficing paths are defined to be sequences of joint policies obtained when each agent uses some $\epsilon$-satisficing policy update rule to select its next policy. We establish structural results on the existence of $\epsilon$-satisficing paths into $\epsilon$-equilibrium in both symmetric $N$-player games and general stochastic games with two players. We then present an independent learning algorithm for $N$-player symmetric games and give high probability guarantees of convergence to $\epsilon$-equilibrium under self-play. This guarantee is made using symmetry alone, leveraging the previously unexploited structure of $\epsilon$-satisficing paths.


翻译:在多试剂强化学习(MARL)中,独立学习者是那些不观察系统中其他代理者行动的人。由于信息分散化,设计驱动游戏走向平衡的独立学习者具有挑战性。本文调查使用卫星反射动态来引导独立学习者在随机游戏中达到近似平衡的可行性。对于$\epsilon\geq 0美元,一个$\epsilon$-满意的政策更新规则是指示代理者在对其余玩家的政策反应为$\epslon$-最佳响应时不改变其政策的任何规则。由于信息分散化,设计独立学习路径是具有挑战性的独立学习方式,使用美元-满意政策更新规则来选择下一个政策。我们建立关于存在$\epsilon$-满足政策更新规则的任何结构,在对其余玩家的政策进行对价$-最佳响应$$-最佳响应; 美元-满足路径被确定为联合政策序列的序列,当每个代理使用一些美元-高级游戏机的自平面游戏机级游戏机中,在高概率游戏中进行双级的自平级游戏中学习。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月12日
Arxiv
1+阅读 · 2023年4月11日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员