In this work we assess the role played by the dynamical adaptation of the interactions network, among agents playing Coordination Games, in reaching global coordination and in the equilibrium selection. Specifically, we analyze a coevolution model that couples the changes in agents' actions with the network dynamics, so that while agents play the game, they are able to sever some of their current connections and connect with others. We focus on two update rules: Replicator Dynamics (RD) and Unconditional Imitation (UI). We investigate a Pure Coordination Game (PCG), in which choices are equivalent, and on a General Coordination Game (GCG), for which there is a risk-dominant action and a payoff-dominant one. The network plasticity is measured by the probability to rewire links. Changing this plasticity parameter, there is a transition from a regime in which the system fully coordinates in a single connected component to a regime in which the system fragments in two connected components, each one coordinated on a different action (either if both actions are equivalent or not). The nature of this fragmentation transition is different for different update rules. Second, we find that both for RD and UI in a GCG, there is a regime of intermediate values of plasticity, before the fragmentation transition, for which the system is able to fully coordinate in a single component network on the payoff-dominant action, i. e., coevolution enhances payoff-dominant equilibrium selection for both update rules.


翻译:在这项工作中,我们评估了互动网络、参加协调运动会的代理人之间动态调整在达到全球协调和均衡选择方面所发挥的作用。具体地说,我们分析了一种连动模式,即将代理人行动的变化与网络动态结合起来,从而在代理人玩游戏的同时,他们能够断分目前一些连接,并与其他人连接。我们侧重于两个更新规则:复制者动态(RD)和无条件消化(UI),我们调查一个纯粹协调游戏(PCG)(PCG),其中的选择是等效的),以及一个总协调游戏(GCG),其中存在风险主导行动和回报主导游戏。网络的可塑性是通过重新连接的概率来衡量的。改变这种可塑性参数,从一个系统从一个单一连接的系统向一个系统系统进行充分协调,其中系统分解了两个相互关联的部分,每个部分都协调了不同的行动(如果两种行动都是等效的)。对于不同的规则来说,这种支离破碎的转变的性质是不同的更新规则。第二,我们发现,网络的网络的可重线性是以重新链接的可能性来衡量。在中间的系统中,一个系统里,一个是支付系统,一个可以完全地调整。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月11日
Arxiv
0+阅读 · 2023年4月10日
Arxiv
0+阅读 · 2023年4月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员