Epicardial adipose tissue is a type of adipose tissue located between the heart wall and a protective layer around the heart called the pericardium. The volume and thickness of epicardial adipose tissue are linked to various cardiovascular diseases. It is shown to be an independent cardiovascular disease risk factor. Fully automatic and reliable measurements of epicardial adipose tissue from CT scans could provide better disease risk assessment and enable the processing of large CT image data sets for a systemic epicardial adipose tissue study. This paper proposes a method for fully automatic semantic segmentation of epicardial adipose tissue from CT images using a deep neural network. The proposed network uses a U-Net-based architecture with slice depth information embedded in the input image to segment a pericardium region of interest, which is used to obtain an epicardial adipose tissue segmentation. Image augmentation is used to increase model robustness. Cross-validation of the proposed method yields a Dice score of 0.86 on the CT scans of 20 patients.
翻译:皮肤脂肪组织是一种位于心脏壁与心脏周围一个防护层之间的脂肪组织,称为心心肌梗塞。震动脂肪组织的数量和厚度与各种心血管疾病有关。它被证明是一个独立的心血管疾病风险因素。完全自动和可靠地测量CT扫描的震动脂肪组织可以提供更好的疾病风险评估,并能够处理大规模CT图像数据集,用于系统震动脂肪组织研究。本文建议采用一种方法,利用深神经网络将CT图像的震动脂肪组织完全自动地进行语义分解。拟议的网络使用基于U-Net的建筑,在输入图像中嵌入切片深度信息,嵌入一个感兴趣的心心血管区域。图像增强用于获取震动脂肪组织分块。图像增强用于增强模型的坚固度。拟议方法的交叉校验得出20名病人CT扫描的Dice分数为0.86。