Given a text description, Temporal Language Grounding (TLG) aims to localize temporal boundaries of the segments that contain the specified semantics in an untrimmed video. TLG is inherently a challenging task, as it requires to have comprehensive understanding of both video contents and text sentences. Previous works either tackle this task in a fully-supervised setting that requires a large amount of manual annotations or in a weakly supervised setting that cannot achieve satisfactory performance. To achieve good performance with limited annotations, we tackle this task in a semi-supervised way and propose a unified Semi-supervised Temporal Language Grounding (STLG) framework. STLG consists of two parts: (1) A pseudo label generation module that produces adaptive instant pseudo labels for unlabeled data based on predictions from a teacher model; (2) A self-supervised feature learning module with two sequential perturbations, i.e., time lagging and time scaling, for improving the video representation by inter-modal and intra-modal contrastive learning. We conduct experiments on the ActivityNet-CD-OOD and Charades-CD-OOD datasets and the results demonstrate that our proposed STLG framework achieve competitive performance compared to fully-supervised state-of-the-art methods with only a small portion of temporal annotations.


翻译:鉴于文本描述,时地语言定位(TLG)旨在将含有特定语义的段段在未剪辑的视频中的时间界限本地化。 TLG本质上是一项具有挑战性的任务,因为它要求全面理解视频内容和文本句。以前的工作要么在完全监督下的环境下处理这项任务,需要大量手动说明,要么在缺乏监督、无法取得令人满意的性能的环境下处理这项任务。为了以有限的注释实现良好的表现,我们以半监督的方式处理这项任务,并提议一个统一的半监督的时地语言定位(STLG)框架。STLG由两部分组成:(1) 假标签生成模块,根据教师模型的预测,为不贴标签的数据制作适应性的即时假标签;(2) 自我监督的特征学习模块,有两种连续的扰动,即时间滞后和时间缩放,通过现代和内部的对比性学习来改进视频代表。我们在活动网-CDOD和Charades-CD-ODS-ODS-OD-ODS-ODSupress production (Spar-Scial-Supal-Adress) Procial Stat-hasset-hassetal sal sal salslupalslupalslationals)框架上拟议的仅仅仅能结果。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
4+阅读 · 2019年9月5日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
Arxiv
7+阅读 · 2018年11月27日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员