The reconfiguration graph $\mathcal{C}_k(G)$ for the $k$-colourings of a graph $G$ has a vertex for each proper $k$-colouring of $G$, and two vertices of $\mathcal{C}_k(G)$ are adjacent precisely when those $k$-colourings differ on a single vertex of $G$. Much work has focused on bounding the maximum value of ${\rm{diam}}~\mathcal{C}_k(G)$ over all $n$-vertex graphs $G$. We consider the analogous problems for list colourings and for correspondence colourings. We conjecture that if $L$ is a list-assignment for a graph $G$ with $|L(v)|\ge d(v)+2$ for all $v\in V(G)$, then ${\rm{diam}}~\mathcal{C}_L(G)\le n(G)+\mu(G)$. We also conjecture that if $(L,H)$ is a correspondence cover for a graph $G$ with $|L(v)|\ge d(v)+2$ for all $v\in V(G)$, then ${\rm{diam}}~\mathcal{C}_{(L,H)}(G)\le n(G)+\tau(G)$. (Here $\mu(G)$ and $\tau(G)$ denote the matching number and vertex cover number of $G$.) For every graph $G$, we give constructions showing that both conjectures are best possible. Our first main result proves the upper bounds (for the list and correspondence versions, respectively) ${\rm{diam}}~\mathcal{C}_L(G)\le n(G)+2\mu(G)$ and ${\rm{diam}}~\mathcal{C}_{(L,H)}(G)\le n(G)+2\tau(G)$. Our second main result proves that both conjectured bounds hold, whenever all $v$ satisfy $|L(v)|\ge 2d(v)+1$. We also prove more precise results when $G$ is a tree. We conclude by proving one or both conjectures for various classes of graphs such as complete bipartite graphs, subcubic graphs, cactuses, and graphs with bounded maximum average degree.
翻译:$\mathcal{C ⁇ k(G) $(G) $(G) $(G) $(G) $(G) $(G) $(G) $(G) $(G) $(G) $(G) $(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(美元) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(N(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(G) 美元(O(G) 美元(G) 美元(美元(G) 美元(美元) 美元(G) 美元(美元) 美元(美元(美元) 美元) 美元(美元) 美元) 美元(美元(美元) 美元(美元) 美元) 美元(G) 美元(美元) 美元(美元(G) 美元(G) 美元(美元(美元(美元) 美元(美元(美元) ) 美元(美元) ) 美元(美元(美元) 美元(美元(美元) ) 美元(美元(美元) ) ) ) (美元(美元(美元) (美元) ) ) ) (美元(美元(美元(美元)