We introduce the concept of Most, and Least, Compact Spanning Trees -- denoted respectively by $T^*(G)$ and $T^\#(G)$ -- of a simple, connected, undirected and unweighted graph $G(V, E, W)$. For a spanning tree $T(G) \in \mathcal{T}(G)$ to be considered $T^*(G)$, where $\mathcal{T}(G)$ represents the set of all the spanning trees of the graph $G$, it must have the least sum of inter-vertex pair shortest path distances from amongst the members of the set $\mathcal{T}(G)$. Similarly, for it to be considered $T^\#(G)$, it must have the highest sum of inter-vertex pair shortest path distances. In this work, we present an iteratively greedy rank-and-regress method that produces at least one $T^*(G)$ or $T^\#(G)$ by eliminating one extremal edge per iteration.The rank function for performing the elimination is based on the elements of the matrix of relative forest accessibilities of a graph and the related forest distance. We provide empirical evidence in support of our methodology using some standard graph families; and discuss potentials for computational efficiencies, along with relevant trade-offs, to enable the extraction of $T^*(G)$ and $T^\#(G)$ within reasonable time limits on standard platforms.
翻译:我们引入了Most 和least, Contact Sloyment Strats的概念 -- -- 分别用$T ⁇ (G)美元和$T ⁇ (G)美元表示 -- -- 一个简单、连接、无方向和未加权的图形$G(V,E,W)美元的概念。对于一个横跨树的$T(G)\in\mathcal{T}(G)美元的概念,将被视为$T ⁇ (G)美元(G)美元,其中$\mathcal{T}(G)美元代表图中所有横跨树的平台,美元,它必须拥有一个最短的双对对双最短的路径距离总和(G)美元。对于这个概念,它必须拥有一个最短的横跨树(G)美元(G)美元概念的概念,它代表着一个至少能产生$T ⁇ (G)美元或$T ⁇ (G)美元或$T ⁇ (G)的平面平台,它必须拥有一个最短的距离距离最短的路程。 同样,我们使用一个相关的森林平面的平面的平面计算方法, 提供了我们有关森林平面的平面的平面的平比比标的 和比标的 。