We propose a highly data-efficient classification and active learning framework for classifying chest X-rays. It is based on (1) unsupervised representation learning of a Convolutional Neural Network and (2) the Gaussian Process method. The unsupervised representation learning employs self-supervision that does not require class labels, and the learned features are proven to achieve label-efficient classification. GP is a kernel-based Bayesian approach that also leads to data-efficient predictions with the added benefit of estimating each decision's uncertainty. Our novel framework combines these two elements in sequence to achieve highly data and label efficient classifications. Moreover, both elements are less sensitive to the prevalent and challenging class imbalance issue, thanks to the (1) feature learned without labels and (2) the Bayesian nature of GP. The GP-provided uncertainty estimates enable active learning by ranking samples based on the uncertainty and selectively labeling samples showing higher uncertainty. We apply this novel combination to the data-deficient and severely imbalanced case of COVID-19 chest X-ray classification. We demonstrate that only $\sim 10\%$ of the labeled data is needed to reach the accuracy from training all available labels. Its application to the COVID-19 data in a fully supervised classification scenario shows that our model, with a generic ResNet backbone, outperforms (COVID-19 case by 4\%) the state-of-the-art model with a highly tuned architecture. Our model architecture and proposed framework are general and straightforward to apply to a broader class of datasets, with expected success.


翻译:我们提出一个高数据效率的分类和积极的学习框架,用于对胸前X光进行分类,其依据是:(1) 对进化神经网络进行不受监督的代表性学习,(2) 高斯进程方法;无监督的代表性学习采用自我监督,不需要等级标签,所学到的特征证明可以实现标签效率分类;GP是一种以内核为基础的巴伊西亚方法,它也导致数据效率的预测,并增加估算每项决定不确定性的效益。我们的新框架将这两个要素按顺序合并,以达到高数据并标出效率的分类。此外,这两个要素对普遍和具有挑战性的阶级不平衡问题不太敏感,因为(1) 在没有标签的情况下学习的特征以及(2) 通用GP的巴伊西亚性质。 GP提供的不确定性估计有助于根据不确定性和有选择性的标签样本进行排名,显示更高的不确定性。我们将这种新组合应用于CVI-19胸前框架的模型和严重失衡的架构分类。 我们证明,只有10-CO-19标准结构中的10-x值, 和整个通用标准数据库中的常规数据应用需要完全的准确性。

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Learning to Importance Sample in Primary Sample Space
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员