This study discusses the importance of balancing spatial and non-spatial variation in spatial regression modeling. Unlike spatially varying coefficients (SVC) modeling, which is popular in spatial statistics, non-spatially varying coefficients (NVC) modeling has largely been unexplored in spatial fields. Nevertheless, as we will explain, consideration of non-spatial variation is needed not only to improve model accuracy but also to reduce spurious correlation among varying coefficients, which is a major problem in SVC modeling. We consider a Moran eigenvector approach modeling spatially and non-spatially varying coefficients (S&NVC). A Monte Carlo simulation experiment comparing our S&NVC model with existing SVC models suggests both modeling accuracy and computational efficiency for our approach. Beyond that, somewhat surprisingly, our approach identifies true and spurious correlations among coefficients nearly perfectly, even when usual SVC models suffer from severe spurious correlations. It implies that S&NVC model should be used even when the analysis purpose is modeling SVCs. Finally, our S&NVC model is employed to analyze a residential land price dataset. Its results suggest existence of both spatial and non-spatial variation in regression coefficients in practice. The S&NVC model is now implemented in the R package spmoran.
翻译:本研究讨论了空间回归模型中平衡空间和非空间差异的重要性。与空间统计中流行的空间差异系数(SVC)模型不同,空间领域基本上没有探索非间差系数(NVC)模型。然而,正如我们将要解释的那样,考虑非空间差异不仅需要提高模型准确性,而且还需要减少不同系数之间的虚假关联性,这是SVC模型中的一个主要问题。我们认为,在空间和非间差系数(S&NVC)模型中建模莫兰电子基因变量(S&NVC)模型中建模。将我们的S & NVC模型与现有的SVC模型进行比较的蒙特卡洛模拟实验表明,为我们的方法建模准确性和计算效率。此外,有些令人惊讶的是,我们的方法查明了各种系数之间真实和虚假的关联性几乎是完美的,即使通常的SVC模型存在严重虚假的关联性。这意味着,即使在进行SVC模型模拟时,也应使用S&NVC模型(S&NVC)模型中建模的模型和SVC(S&NVC)模型中建模中的建模模型都用于分析住宅价格模型的模型。