We consider alignment of sparse graphs, which consists in finding a mapping between the nodes of two graphs which preserves most of the edges. Our approach is to compare local structures in the two graphs, matching two nodes if their neighborhoods are 'close enough': for correlated Erd\H{o}s-R\'enyi random graphs, this problem can be locally rephrased in terms of testing whether a pair of branching trees is drawn from either a product distribution, or a correlated distribution. We design an optimal test for this problem which gives rise to a message-passing algorithm for graph alignment, which provably returns in polynomial time a positive fraction of correctly matched vertices, and a vanishing fraction of mismatches. With an average degree $\lambda = O(1)$ in the graphs, and a correlation parameter $s \in [0,1]$, this result holds with $\lambda s$ large enough, and $1-s$ small enough, completing the recent state-of-the-art diagram. Tighter conditions for determining whether partial graph alignment (or correlation detection in trees) is feasible in polynomial time are given in terms of Kullback-Leibler divergences.
翻译:我们考虑对稀有图表进行校正, 其中包括在保存大部分边缘的两张图表的节点之间绘制地图。 我们的方法是比较两张图表中的本地结构, 如果相邻区域“ 足够接近”, 匹配两个节点 : 对于相关的 Erd\ H{o}s- R\'enyi 随机图, 这个问题可以在本地重新表述, 测试一对树是从产品分销中提取, 还是从相关分布中提取的。 我们设计了这一问题的最佳测试, 由此为图形对齐设定了一条信息传递算法, 在两个图形对齐时, 可以明显返回一个正匹配的脊椎的正分数, 以及一个错配的消失部分 。 在图表中, 平均的 $\ lambda = O(1) 美元, 以及一个相关参数 $ = [ 0. 1, 美元, 这个结果与 $\lambda s 足够大, 和 $ 足够小的 $ 。 我们设计了一个最佳的测试, 完成最近的状态- 艺术图表。 。 给定了一个更严格的条件,,, 确定部分的图形对齐的图像是 库中, 的平时值 。 。 。 的 。给给给给定点的 的 。