We develop a class of nearest neighbor mixture transition distribution process (NNMP) models that provides flexibility and scalability for non-Gaussian geostatistical data. We use a directed acyclic graph to define a proper spatial process with finite-dimensional distributions given by finite mixtures. We develop conditions to construct general NNMP models with pre-specified stationary marginal distributions. We also establish lower bounds for the strength of the tail dependence implied by NNMP models, demonstrating the flexibility of the proposed methodology for modeling multivariate dependence through bivariate distribution specification. To implement inference and prediction, we formulate a Bayesian hierarchical model for the data, using the NNMP prior model for the spatial random effects process. From an inferential point of view, the NNMP model lays out a new computational approach to handling large spatial data sets, leveraging the mixture model structure to avoid computational issues that arise from large matrix operations. We illustrate the benefits of the NNMP modeling framework using synthetic data examples and through analysis of sea surface temperature data from the Mediterranean sea.
翻译:我们开发了近邻近邻混合物过渡分配过程(NNMP)模型,为非Gausian地理统计数据提供了灵活性和可扩缩性。我们使用定向环绕图来定义一个由有限混合物提供的有限尺寸分布的适当空间过程。我们开发了各种条件,用预先指定的固定边际分布来构建通用NNMP模型。我们还为NNMP模型所隐含的尾部依赖性强度设定了较低的界限,显示了通过双变量分布规格为多变量依赖性建模的拟议方法的灵活性。为了执行推论和预测,我们用NNNMP先前的空间随机效应过程模型为数据设计了一个巴伊西亚等级模型。从推断的角度,NNNMP模型为处理大型空间数据集制定了新的计算方法,利用混合模型结构避免大型矩阵操作产生的计算问题。我们用合成数据实例并通过分析地中海海面温度数据来说明NNMP建模框架的好处。