The JPEG algorithm is a defacto standard for image compression. We investigate whether adaptive mesh refinement can be used to optimize the compression ratio and propose a new adaptive image compression algorithm. We prove that it produces a quasi-optimal subdivision grid for a given error norm with high probability. This subdivision can be stored with very little overhead and thus leads to an efficient compression algorithm. We demonstrate experimentally, that the new algorithm can achieve better compression ratios than standard JPEG compression with no visible loss of quality on many images. The mathematical core of this work shows that Binev's optimal tree approximation algorithm is applicable to image compression with high probability, when we assume small additive Gaussian noise on the pixels of the image.
翻译:我们研究了是否可以使用自适应网格细化来优化压缩比,并提出了一种新的自适应图像压缩算法。我们证明,它在给定误差规范下产生准最优的子网格的概率很高。这种细分可以以极小的开销存储,从而导致一种高效的压缩算法。我们通过实验演示了,新算法可以在许多图像上实现比标准JPEG压缩更好的压缩比,而且没有明显的质量损失。本文的数学核心表明,当我们假设图像像素存在小的加性高斯噪声时,Binev 的最优树近似算法可以应用于图像压缩,且具有高概率的可行性。