项目名称: 基于张量结构和lq范数的低秩张量恢复和补全

项目编号: No.61501300

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 孙维泽

作者单位: 深圳大学

项目金额: 21万元

中文摘要: 低秩张量恢复和补全是一个在数据挖掘、视频数据和生物信息数据处理等多个领域有着广泛应用的科学与工程问题。精确、高效和鲁棒性张量恢复及补全算法研究是数据处理中需要解决的一个核心问题。本项目通过深入研究数据的张量特性、张量分解所得元素的特征,在矩阵恢复和补全的算法的基础上,提出基于张量及其分解所得元素的结构和特征的算法,从而取得更好的恢复和补全结果。同时,通过将矩阵子空间的分析方法拓展至张量子空间,进一步的发掘张量子空间和核心张量的应用机理,从而从理论上对张量恢复和补全的方法进行深入的分析和探讨。更进一步地,通过结合lq范数的思想与张量恢复的模型,我们给出基于lq范数的张量恢复的公式,及应用迭代、l2范数平滑、凸优化等数学方法求解,提出相应的恢复算法,并将其拓展至张量补全中。本项目的研究将拓展高维张量恢复和补全的算法尤其是鲁棒性算法在多个领域中的应用,并为其提供充分的数学和理论依据。

中文关键词: 张量恢复;张量补全;高维信号;稀疏表示;低秩张量

英文摘要: Low-rank tensor recovery and completion are important topics in science and engineering because they are widely used in many real-world applications such as data mining, video signal and biological information data processing. Derivation of Accurate, efficient and robust tensor recovery and completion algorithms is a key problem in data processing. Based on the researches on matrix recovery and completion, and a deep study on the structure and characteristics of tensor as well as the components from its decompositions, we propose to derive new tensor recovery and completion algorithms to obtain better recovery and completion results. At the same time, by extending the analysis methods of recovery and completion algorithms from matrix subspace to tensor subspace, we explore the application mechanism of the tensor subspaces and the core tensor, and then perform the theoretical analysis of the tensor recovery and completion algorithms. Furthermore, by combing the idea of lq norm and the model of tensor recover, we propose the tensor recovery equations based on lq norm, and then apply the mathematical methods such as iteration procedure, l2 norm smoothing and convex optimization to derive corresponding algorithms, as well as extend it to the area of tensor completion. These researches will expand the application of high-dimensional tensor recovery and completion algorithms, especially robust algorithms, in many applications, and provide sufficient mathematical and theoretical analysis for the algorithms.

英文关键词: Tensor Recovery;Tensor Completion;Multidimentional Signal;Sparse Representation;Low-rank Tensors

成为VIP会员查看完整内容
1

相关内容

【新书稿】数据科学的谱方法:统计的视角,168页pdf
专知会员服务
57+阅读 · 2021年10月28日
算法分析导论, 593页pdf
专知会员服务
148+阅读 · 2021年8月30日
专知会员服务
20+阅读 · 2021年8月24日
专知会员服务
11+阅读 · 2021年7月27日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
35+阅读 · 2021年2月20日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【干货书】Python数据科学分析,413页pdf
专知会员服务
90+阅读 · 2020年8月22日
专知会员服务
78+阅读 · 2020年8月4日
Transformer性能优化:运算和显存
PaperWeekly
1+阅读 · 2022年3月29日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
卷积神经网络(CNN)反向传播算法推导
极市平台
2+阅读 · 2021年12月15日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
综述:PyTorch显存机制分析
极市平台
0+阅读 · 2021年11月5日
深度学习Pytorch框架Tensor张量
极市平台
0+阅读 · 2021年11月1日
专栏 | 浅析图卷积神经网络
机器之心
28+阅读 · 2018年7月4日
Tensorflow卷积神经网络
全球人工智能
13+阅读 · 2017年10月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
12+阅读 · 2019年3月14日
小贴士
相关VIP内容
【新书稿】数据科学的谱方法:统计的视角,168页pdf
专知会员服务
57+阅读 · 2021年10月28日
算法分析导论, 593页pdf
专知会员服务
148+阅读 · 2021年8月30日
专知会员服务
20+阅读 · 2021年8月24日
专知会员服务
11+阅读 · 2021年7月27日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
35+阅读 · 2021年2月20日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【干货书】Python数据科学分析,413页pdf
专知会员服务
90+阅读 · 2020年8月22日
专知会员服务
78+阅读 · 2020年8月4日
相关资讯
Transformer性能优化:运算和显存
PaperWeekly
1+阅读 · 2022年3月29日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
卷积神经网络(CNN)反向传播算法推导
极市平台
2+阅读 · 2021年12月15日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
综述:PyTorch显存机制分析
极市平台
0+阅读 · 2021年11月5日
深度学习Pytorch框架Tensor张量
极市平台
0+阅读 · 2021年11月1日
专栏 | 浅析图卷积神经网络
机器之心
28+阅读 · 2018年7月4日
Tensorflow卷积神经网络
全球人工智能
13+阅读 · 2017年10月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员