Attention mechanism plays a more and more important role in point cloud analysis and channel attention is one of the hotspots. With so much channel information, it is difficult for neural networks to screen useful channel information. Thus, an adaptive channel encoding mechanism is proposed to capture channel relationships in this paper. It improves the quality of the representation generated by the network by explicitly encoding the interdependence between the channels of its features. Specifically, a channel-wise convolution (Channel-Conv) is proposed to adaptively learn the relationship between coordinates and features, so as to encode the channel. Different from the popular attention weight schemes, the Channel-Conv proposed in this paper realizes adaptability in convolution operation, rather than simply assigning different weights for channels. Extensive experiments on existing benchmarks verify our method achieves the state of the arts.


翻译:关注机制在云点分析和频道关注方面发挥越来越重要的作用,它是一个热点。由于有这么多的频道信息,神经网络很难筛选有用的频道信息。因此,建议采用适应性频道编码机制来捕捉本文件中的频道关系。它通过明确将网络特征各渠道之间的相互依存性编码来提高网络代表的质量。具体地说,建议以频道为方向的共变机制(Channel-Conv)来适应性地学习坐标和特征之间的关系,以便编码频道。与公众关注权重计划不同,本文中提议的Channel-Conv(Channel-Conv)与公众关注权重计划不同,它认识到了连带操作的适应性,而不是简单地为频道分配不同的权重。关于现有基准的广泛实验可以验证我们的方法是否达到了艺术的状态。

0
下载
关闭预览

相关内容

【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
74+阅读 · 2021年1月10日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
轻量attention模块:Spatial Group-wise Enhance
极市平台
15+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2020年3月16日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
轻量attention模块:Spatial Group-wise Enhance
极市平台
15+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员