Alzheimer's dementia (AD) affects memory, thinking, and language, deteriorating person's life. An early diagnosis is very important as it enables the person to receive medical help and ensure quality of life. Therefore, leveraging spontaneous speech in conjunction with machine learning methods for recognizing AD patients has emerged into a hot topic. Most of the previous works employ Convolutional Neural Networks (CNNs), to process the input signal. However, finding a CNN architecture is a time-consuming process and requires domain expertise. Moreover, the researchers introduce early and late fusion approaches for fusing different modalities or concatenate the representations of the different modalities during training, thus the inter-modal interactions are not captured. To tackle these limitations, first we exploit a Neural Architecture Search (NAS) method to automatically find a high performing CNN architecture. Next, we exploit several fusion methods, including Multimodal Factorized Bilinear Pooling and Tucker Decomposition, to combine both speech and text modalities. To the best of our knowledge, there is no prior work exploiting a NAS approach and these fusion methods in the task of dementia detection from spontaneous speech. We perform extensive experiments on the ADReSS Challenge dataset and show the effectiveness of our approach over state-of-the-art methods.


翻译:阿尔茨海默病(AD)会影响人的记忆、思考和语言能力,破坏生活质量。早期诊断非常重要,因为它使患者能够接受医疗帮助并保证生活质量。因此,结合机器学习方法和自发语音来识别AD患者已成为一个热门话题。以往的大部分研究采用卷积神经网络(CNN)处理输入信号。然而,寻找CNN架构是一项耗时的过程,需要领域知识,因此我们提出了一种神经架构搜索(NAS)方法,自动寻找高性能CNN架构。此外,我们利用多模态因子双线性池化和Tucker分解等多种融合方法,结合语音和文本模态。与我们所知的最先进的方法相比,上述方法在ADReSS挑战数据集上表现出较好的效果,并且我们的方法在这个任务中是首次利用NAS方法和这些融合方法来检测自发言语中的痴呆症。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2021年6月30日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员