We present a data-driven framework for learning fair universal representations (FUR) that guarantee statistical fairness for any learning task that may not be known a priori. Our framework leverages recent advances in adversarial learning to allow a data holder to learn representations in which a set of sensitive attributes are decoupled from the rest of the dataset. We formulate this as a constrained minimax game between an encoder and an adversary where the constraint ensures a measure of usefulness (utility) of the representation. The resulting problem is that of censoring, i.e., finding a representation that is least informative about the sensitive attributes given a utility constraint. For appropriately chosen adversarial loss functions, our censoring framework precisely clarifies the optimal adversarial strategy against strong information-theoretic adversaries; it also achieves the fairness measure of demographic parity for the resulting constrained representations. We evaluate the performance of our proposed framework on both synthetic and publicly available datasets. For these datasets, we use two tradeoff measures: censoring vs. representation fidelity and fairness vs. utility for downstream tasks, to amply demonstrate that multiple sensitive features can be effectively censored even as the resulting fair representations ensure accuracy for multiple downstream tasks.


翻译:我们提出了一个数据驱动框架,用于学习可能事先不为人知的公平普遍代表制(FUR),保证任何学习任务在统计上的公平性。我们的框架利用对抗性学习的最新进展,使数据持有人能够学习一套敏感属性与数据集其余部分脱钩的表示式。我们将此设计成一个在编码器和对手之间受到限制的小型游戏,其制约确保了代表制的效用(效用)的衡量。由此产生的问题在于审查,即找到对敏感属性了解最少的表示式,因为存在效用限制。对于适当选择的对抗性损失功能,我们的审查框架精确地澄清了针对强大信息理论对手的最佳对抗性战略;它还实现了对由此产生的限制表示式进行人口均等的公平衡量。我们评估了我们关于合成和公开提供数据集的拟议框架的性能。关于这些数据集,我们使用了两种权衡措施:审查对代表的忠诚和公平性与下游任务的实用性,以充分证明多重敏感特征可以有效地在下游审查,即使由此产生公平代表制,也确保了多重的准确性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
CTrGAN: Cycle Transformers GAN for Gait Transfer
Arxiv
0+阅读 · 2022年6月30日
Mental Models of Adversarial Machine Learning
Arxiv
0+阅读 · 2022年6月29日
Arxiv
1+阅读 · 2022年6月29日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员