Embeddings are an important tool for the representation of word meaning. Their effectiveness rests on the distributional hypothesis: words that occur in the same context carry similar semantic information. Here, we adapt this approach to index visual semantics in images of scenes. To this end, we formulate a distributional hypothesis for objects and scenes: Scenes that contain the same objects (object context) are semantically related. Similarly, objects that appear in the same spatial context (within a scene or subregions of a scene) are semantically related. We develop two approaches for learning object and scene embeddings from annotated images. In the first approach, we adapt LSA and Word2vec's Skipgram and CBOW models to generate two sets of embeddings from object co-occurrences in whole images, one for objects and one for scenes. The representational space spanned by these embeddings suggests that the distributional hypothesis holds for images. In an initial application of this approach, we show that our image-based embeddings improve scene classification models such as ResNet18 and VGG-11 (3.72\% improvement on Top5 accuracy, 4.56\% improvement on Top1 accuracy). In the second approach, rather than analyzing whole images of scenes, we focus on co-occurrences of objects within subregions of an image. We illustrate that this method yields a sensible hierarchical decomposition of a scene into collections of semantically related objects. Overall, these results suggest that object and scene embeddings from object co-occurrences and spatial context yield semantically meaningful representations as well as computational improvements for downstream applications such as scene classification.


翻译:嵌入是表达字义含义的一个重要工具。 其有效性取决于分布假设 。 其有效性取决于分布假设 。 用于从注释图像中学习对象和场景嵌入的两种方法 。 在此, 我们调整此方法以在图像图像中索引视觉语义 。 为此, 我们为对象和场景制定一个分布假设 : 包含相同对象的场景( 对象环境) 具有语义联系 。 同样, 出现在相同空间环境( 在场景的场景或次区域) 中的天体具有语义关联性 。 我们开发了两种方法 : 从注释图像中学习对象和场景嵌入。 在第一个方法中, 我们调整 LSLSA 和 Word2vec 的 SGGGGgram 和 CBOW 模型, 以生成两套对象共嵌入图像的嵌入图案集 : 包含相同对象的场景( 对象环境环境) 的场景假设 。 同样, 我们的图像嵌入式将改善的场景分类模型, 显示我们从 ResNet18 和 VGGG- 11 (3. 11) 的 的 的底 的 的图像的图像的图像的精确度 。

0
下载
关闭预览

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员