Next destination recommendation is an important task in the transportation domain of taxi and ride-hailing services, where users are recommended with personalized destinations given their current origin location. However, recent recommendation works do not satisfy this origin-awareness property, and only consider learning from historical destination locations, without origin information. Thus, the resulting approaches are unable to learn and predict origin-aware recommendations based on the user's current location, leading to sub-optimal performance and poor real-world practicality. Hence, in this work, we study the origin-aware next destination recommendation task. We propose the Spatial-Temporal Origin-Destination Personalized Preference Attention (STOD-PPA) encoder-decoder model to learn origin-origin (OO), destination-destination (DD), and origin-destination (OD) relationships by first encoding both origin and destination sequences with spatial and temporal factors in local and global views, then decoding them through personalized preference attention to predict the next destination. Experimental results on seven real-world user trajectory taxi datasets show that our model significantly outperforms baseline and state-of-the-art methods.


翻译:下一个目的地建议是出租车和乘车服务运输领域的一项重要任务,即根据目前原籍地,向用户推荐个性化目的地;然而,最近的建议工作并不能满足这种来源意识财产的要求,而只是考虑从历史目的地学习,而没有来源信息;因此,由此产生的方法无法根据用户目前所处的位置,学习和预测来源意识建议,导致业绩欠佳,现实世界的实用性差;因此,在这项工作中,我们研究来源意识下一个目的地建议任务。我们提议了空间-时间性原产目的地个性化关注(STOD-PPA) 编码脱钩模式,以学习来源地(OO)、目的地目的地(DD)和来源地-目的地(OD)关系,首先将来源地和目的地顺序与当地和全球的时空因素进行校正,然后通过个人化偏好来分解,预测下一个目的地。7个真实世界用户轨迹出租车数据集的实验结果显示,我们的模式大大超出基线和状态。

0
下载
关闭预览

相关内容

一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
从Seq2seq到Attention模型到Self Attention(二)
量化投资与机器学习
23+阅读 · 2018年10月9日
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
6+阅读 · 2017年12月8日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
TensorFlow seq2seq中的Attention机制(续)
深度学习每日摘要
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
从Seq2seq到Attention模型到Self Attention(二)
量化投资与机器学习
23+阅读 · 2018年10月9日
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
6+阅读 · 2017年12月8日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
TensorFlow seq2seq中的Attention机制(续)
深度学习每日摘要
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员