This paper introduces kernel continual learning, a simple but effective variant of continual learning that leverages the non-parametric nature of kernel methods to tackle catastrophic forgetting. We deploy an episodic memory unit that stores a subset of samples for each task to learn task-specific classifiers based on kernel ridge regression. This does not require memory replay and systematically avoids task interference in the classifiers. We further introduce variational random features to learn a data-driven kernel for each task. To do so, we formulate kernel continual learning as a variational inference problem, where a random Fourier basis is incorporated as the latent variable. The variational posterior distribution over the random Fourier basis is inferred from the coreset of each task. In this way, we are able to generate more informative kernels specific to each task, and, more importantly, the coreset size can be reduced to achieve more compact memory, resulting in more efficient continual learning based on episodic memory. Extensive evaluation on four benchmarks demonstrates the effectiveness and promise of kernels for continual learning.
翻译:本文引入了内核持续学习, 这是一种简单而有效的持续学习的变体, 利用内核方法的非参数性来应对灾难性的遗忘。 我们使用一个偶发存储器, 存储每个任务的特定样本, 以学习基于内核脊回归的任务分类器。 这不需要记忆回放, 并系统地避免任务干扰 。 我们进一步引入变式随机特性, 以学习每项任务的数据驱动内核 。 为了这样做, 我们将内核持续学习作为一种变异推论问题, 随机的 Fourier 基础被整合为潜在变量 。 随机的 Fourier 基础的变异的外表分布从每件任务的核心图中推断出来。 这样, 我们就能产生更多针对每项任务的信息性内核, 更重要的是, 核心的大小可以缩小, 实现更紧凑的内核记忆, 导致基于上层记忆的更高效的持续学习。 对四个基准进行广泛的评估, 显示了内核内核持续学习的效果和前景 。