Recently, pre-training multilingual language models has shown great potential in learning multilingual representation, a crucial topic of natural language processing. Prior works generally use a single mixed attention (MA) module, following TLM (Conneau and Lample, 2019), for attending to intra-lingual and cross-lingual contexts equivalently and simultaneously. In this paper, we propose a network named decomposed attention (DA) as a replacement of MA. The DA consists of an intra-lingual attention (IA) and a cross-lingual attention (CA), which model intralingual and cross-lingual supervisions respectively. In addition, we introduce a language-adaptive re-weighting strategy during training to further boost the model's performance. Experiments on various cross-lingual natural language understanding (NLU) tasks show that the proposed architecture and learning strategy significantly improve the model's cross-lingual transferability.
翻译:最近,培训前多语文模式在学习多语种代表性方面显示出巨大的潜力,这是自然语言处理的一个关键主题,先前的工作通常在TLM(Conneau和Lample,2019年)之后使用一个单一的混合关注模块,以同时同等地处理语文内和跨语文背景,在本文件中,我们提议建立一个称为分解关注(DA)的网络,以取代MA。DA包括一种语言内关注(IA)和一种跨语文的关注(CA),分别作为语文内和跨语文监督的模型。此外,我们在培训期间采用了一种语言适应性再加权战略,以进一步提高该模型的性能。关于各种跨语文的自然语言理解(NLU)任务的实验表明,拟议的结构和学习战略大大改进了该模型的跨语文可转移性。