Deep neural networks (DNNs) are known to be vulnerable to adversarial geometric transformation. This paper aims to verify the robustness of large-scale DNNs against the combination of multiple geometric transformations with a provable guarantee. Given a set of transformations (e.g., rotation, scaling, etc.), we develop GeoRobust, a black-box robustness analyser built upon a novel global optimisation strategy, for locating the worst-case combination of transformations that affect and even alter a network's output. GeoRobust can provide provable guarantees on finding the worst-case combination based on recent advances in Lipschitzian theory. Due to its black-box nature, GeoRobust can be deployed on large-scale DNNs regardless of their architectures, activation functions, and the number of neurons. In practice, GeoRobust can locate the worst-case geometric transformation with high precision for the ResNet50 model on ImageNet in a few seconds on average. We examined 18 ImageNet classifiers, including the ResNet family and vision transformers, and found a positive correlation between the geometric robustness of the networks and the parameter numbers. We also observe that increasing the depth of DNN is more beneficial than increasing its width in terms of improving its geometric robustness. Our tool GeoRobust is available at https://github.com/TrustAI/GeoRobust.
翻译:深度神经网络(DNNs)在面对对抗性几何变换时容易受攻击。本文旨在验证大规模DNNs对多种几何变换的鲁棒性,为其提供可证明的保障。针对一组变换(如旋转、缩放等),我们开发了一种基于全局优化策略的黑盒鲁棒性分析器GeoRobust,用于定位最坏情况下的变换组合,从而严重影响甚至改变网络的输出。GeoRobust能够根据最近的Lipschitz理论进展,提供可证明的保障。由于其黑盒性质,无论DNN网络的架构、激活函数和神经元数量如何,GeoRobust都可以部署在大规模DNNs上。在实践中,GeoRobust平均几秒钟就可以在ImageNet中的ResNet50模型上精确地定位最坏的几何变换。我们检查了18个ImageNet分类器,包括ResNet系列和视觉变换器,并发现网络的几何鲁棒性与参数数量存在正相关关系。我们也观察到,增加DNN的深度比增加其宽度更有利于提高其几何鲁棒性。我们的工具GeoRobust可在https://github.com/TrustAI/GeoRobust上使用。