We provide $m^{1+o(1)}k\epsilon^{-1}$-time algorithms for computing multiplicative $(1 - \epsilon)$-approximate solutions to multi-commodity flow problems with $k$-commodities on $m$-edge directed graphs, including concurrent multi-commodity flow and maximum multi-commodity flow. To obtain our results, we provide new optimization tools of potential independent interest. First, we provide an improved optimization method for solving $\ell_{q, p}$-regression problems to high accuracy. This method makes $\tilde{O}_{q, p}(k)$ queries to a high accuracy convex minimization oracle for an individual block, where $\tilde{O}_{q, p}(\cdot)$ hides factors depending only on $q$, $p$, or $\mathrm{poly}(\log m)$, improving upon the $\tilde{O}_{q, p}(k^2)$ bound of [Chen-Ye, ICALP 2024]. As a result, we obtain the first almost-linear time algorithm that solves $\ell_{q, p}$ flows on directed graphs to high accuracy. Second, we present optimization tools to reduce approximately solving composite $\ell_{1, \infty}$-regression problems to solving $m^{o(1)}\epsilon^{-1}$ instances of composite $\ell_{q, p}$-regression problem. The method builds upon recent advances in solving box-simplex games [Jambulapati-Tian, NeurIPS 2023] and the area convex regularizer introduced in [Sherman, STOC 2017] to obtain faster rates for constrained versions of the problem. Carefully combining these techniques yields our directed multi-commodity flow algorithm.
翻译:暂无翻译