The proper setting of contention window (CW) values has a significant impact on the efficiency of Wi-Fi networks. Unfortunately, the standard method used by 802.11 networks is not scalable enough to maintain stable throughput for an increasing number of stations, yet it remains the default method of channel access for 802.11ax single-user transmissions. Therefore, we propose a new method of CW control, which leverages deep reinforcement learning (DRL) principles to learn the correct settings under different network conditions. Our method, called centralized contention window optimization with DRL (CCOD), supports two trainable control algorithms: deep Q-network (DQN) and deep deterministic policy gradient (DDPG). We demonstrate through simulations that it offers efficiency close to optimal (even in dynamic topologies) while keeping computational cost low.


翻译:不幸的是,802.11个网络使用的标准方法不足以维持越来越多的台站的稳定输送量,然而,它仍然是802.11x单一用户传输的默认通道接入方法,因此,我们提出了一种新的CW控制方法,利用深度强化学习(DRL)原则学习不同网络条件下的正确设置。我们的方法,即与DRL(CCOD)的集中辩论窗口优化,支持两种可训练的控制算法:深Q网络(DQN)和深层确定性政策梯度(DDPG),我们通过模拟来证明它提供了接近最佳的效率(即使在动态表层中),同时保持计算成本低。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
17种深度强化学习算法用Pytorch实现
新智元
30+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
7+阅读 · 2018年12月26日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
17种深度强化学习算法用Pytorch实现
新智元
30+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员