Training quantum neural networks (QNNs) using gradient-based or gradient-free classical optimisation approaches is severely impacted by the presence of barren plateaus in the cost landscapes. In this paper, we devise a framework for leveraging quantum optimisation algorithms to find optimal parameters of QNNs for certain tasks. To achieve this, we coherently encode the cost function of QNNs onto relative phases of a superposition state in the Hilbert space of the network parameters. The parameters are tuned with an iterative quantum optimisation structure using adaptively selected Hamiltonians. The quantum mechanism of this framework exploits hidden structure in the QNN optimisation problem and hence is expected to provide beyond-Grover speed up, mitigating the barren plateau issue.
翻译:使用基于梯度或无梯度的经典优化方法培训量子神经网络(QNNs)受到成本景观中贫瘠高原的严重影响。 在本文中,我们设计了一个框架,利用量子优化算法为某些任务寻找QNNs的最佳参数。为此,我们将QNes的成本功能统一编码到网络参数Hilbert空间的超级状态的相对阶段。参数与迭代量优化结构相调,使用适应性选择的汉密尔顿人。这个框架的量子机制利用QNN的优化问题中的隐藏结构,因此预计将提供超越Grover速度的加速,缓解不毛高原问题。