Transient stability assessment (TSA) is a cornerstone for resilient operations of today's interconnected power grids. This paper is a confluence of quantum computing, data science and machine learning to potentially address the power system TSA challenge. We devise a quantum TSA (qTSA) method to enable scalable and efficient data-driven transient stability prediction for bulk power systems, which is the first attempt to tackle the TSA issue with quantum computing. Our contributions are three-fold: 1) A low-depth, high expressibility quantum neural network for accurate and noise-resilient TSA; 2) A quantum natural gradient descent algorithm for efficient qTSA training; 3) A systematical analysis on qTSA's performance under various quantum factors. qTSA underpins a foundation of quantum-enabled and data-driven power grid stability analytics. It renders the intractable TSA straightforward and effortless in the Hilbert space, and therefore provides stability information for power system operations. Extensive experiments on quantum simulators and real quantum computers verify the accuracy, noise-resilience, scalability and universality of qTSA.
翻译:本文汇集了量子计算、数据科学和机器学习,以潜在地应对TSA电力系统的挑战。我们设计了量子TSA(QTSA)方法,以便能够对散装动力系统进行可扩缩的高效数据驱动的瞬时稳定性预测,这是第一次尝试用量计算来解决TSA问题。我们的贡献有三重:(1) 一个用于准确和耐噪音的TSA的低深度、高清晰度量子神经网络;(2) 高效的QTSA培训的量子自然梯度下降算法;(3) 对QTSA在各种量子因素下的表现进行系统分析。QTSA是量子驱动和数据驱动电网稳定性分析的基础。它使棘手的TSA在希尔伯特空间变得直截了当和无力,因此为动力系统操作提供了稳定性信息。关于量子模拟器和真实量子计算机的广泛实验,以核实QTSA的准确性、噪音弹性、可伸缩性和普遍性。