We propose a novel paradigm of integration of Grover's algorithm in a machine learning framework: the inductive Grover oracular quantum neural network (IGO-QNN). The model defines a variational quantum circuit with hidden layers of parameterized quantum neurons densely connected via entangle synapses to encode a dynamic Grover's search oracle that can be trained from a set of database-hit training examples. This widens the range of problem applications of Grover's unstructured search algorithm to include the vast majority of problems lacking analytic descriptions of solution verifiers, allowing for quadratic speed-up in unstructured search for the set of search problems with relationships between input and output spaces that are tractably underivable deductively. This generalization of Grover's oracularization may prove particularly effective in deep reinforcement learning, computer vision, and, more generally, as a feature vector classifier at the top of an existing model.


翻译:我们提出将格罗弗的算法纳入一个机器学习框架的新模式:感性格罗佛或剖面量子神经网络(IGO-QNN) 。 模型定义了一个变化量子电路,其隐蔽的参数性量子神经元层通过缠绕的突触而紧密相连,以编码动态格罗弗的搜索或触法,从一组数据库破坏训练的例子中可以加以培训。 这扩大了格罗弗非结构化搜索算法的问题应用范围,包括绝大多数缺乏解决方案验证器分析描述的问题,允许在无结构的搜索中进行二次加速,以寻找与输入空间和输出空间之间的关系的一组问题,这些关系是很容易无法被分解的。 这种对格罗弗的剖面化在深度增强学习、计算机视觉以及更一般而言作为现有模型顶部的特性矢量分类器可能特别有效。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年10月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员