Uncertainty quantification techniques such as the time-dependent generalized polynomial chaos (TD-gPC) use an adaptive orthogonal basis to better represent the stochastic part of the solution space (aka random function space) in time. However, because the random function space is constructed using tensor products, TD-gPC-based methods are known to suffer from the curse of dimensionality. In this paper, we introduce a new numerical method called the 'flow-driven spectral chaos' (FSC) which overcomes this curse of dimensionality at the random-function-space level. The proposed method is not only computationally more efficient than existing TD-gPC-based methods but is also far more accurate. The FSC method uses the concept of 'enriched stochastic flow maps' to track the evolution of a finite-dimensional random function space efficiently in time. To transfer the probability information from one random function space to another, two approaches are developed and studied herein. In the first approach, the probability information is transferred in the mean-square sense, whereas in the second approach the transfer is done exactly using a new theorem that was developed for this purpose. The FSC method can quantify uncertainties with high fidelity, especially for the long-time response of stochastic dynamical systems governed by ODEs of arbitrary order. Six representative numerical examples, including a nonlinear problem (the Van-der-Pol oscillator), are presented to demonstrate the performance of the FSC method and corroborate the claims of its superior numerical properties. Finally, a parametric, high-dimensional stochastic problem is used to demonstrate that when the FSC method is used in conjunction with Monte Carlo integration, the curse of dimensionality can be overcome altogether.


翻译:不确定的量化技术, 如基于时间的通用多角度混乱( TD- gPC), 使用一个适应性正方位基础, 以更好地代表解决方案空间( aka随机功能空间) 的随机功能空间。 但是, 由于随机功能空间是使用高压产品构建的, 基于 TD- gPC 的方法已知会受到维度诅咒的影响。 在本文中, 我们引入了名为“ 流驱动光谱混乱( FSC) ” ( FSC) 的新的数字方法, 该方法克服了随机功能空间层面的维度诅咒。 提议的方法不仅比现有的 TD- gPC 方法更高效地计算出解决方案空间的随机部分( a) 解决方案。 FSC 方法使用“ 强化的随机流图” 来及时跟踪一个定量随机功能空间的演变。 要将概率信息从一个随机功能空间转移到另一个空间, 我们开发了两种方法, 并在此展示了一种直径直方位信息的概率信息, 而第二个方法是使用非直径方位法的转换方法,, 其直径直径直到直径直方方方位的直方位的直方位系统, 展示了该方法可以显示一个直径直径直径直方位系统。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月18日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
0+阅读 · 2022年9月15日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员