We propose a supervised principal component regression method for relating functional responses with high dimensional predictors. Unlike the conventional principal component analysis, the proposed method builds on a newly defined expected integrated residual sum of squares, which directly makes use of the association between the functional response and the predictors. Minimizing the integrated residual sum of squares gives the supervised principal components, which is equivalent to solving a sequence of nonconvex generalized Rayleigh quotient optimization problems. We reformulate the nonconvex optimization problems into a simultaneous linear regression with a sparse penalty to deal with high dimensional predictors. Theoretically, we show that the reformulated regression problem can recover the same supervised principal subspace under suitable conditions. Statistically, we establish non-asymptotic error bounds for the proposed estimators. We demonstrate the advantages of the proposed method through both numerical experiments and an application to the Human Connectome Project fMRI data.
翻译:我们建议了一种受监督的主要部分回归法,用于将功能反应与高维预测器联系起来。与常规主要部分分析不同,拟议方法以新定义的预期综合残余方和正方和预测器直接利用功能反应和预测器之间的联系。最小化综合残余方和受监督的主要部分相当于解决一系列非混凝土普遍雷利商数优化问题。我们将非碳化优化问题重新分为同时线性回归,同时对高维预测器适用微薄的处罚。理论上,我们表明重新界定的回归问题可以在适当条件下回收同样的受监督的主要次空间。从统计学上讲,我们为拟议的估计器设定了非被动错误界限。我们通过数字实验和对人类连接项目FMRI数据的应用,展示了拟议方法的优点。