Quadrotors are agile platforms. With human experts, they can perform extremely high-speed flights in cluttered environments. However, fully autonomous flight at high speed remains a significant challenge. In this work, we propose a motion planning algorithm based on the corridor-constrained minimum control effort trajectory optimization (MINCO) framework. Specifically, we use a series of overlapping spheres to represent the free space of the environment and propose two novel designs that enable the algorithm to plan high-speed quadrotor trajectories in real-time. One is a sampling-based corridor generation method that generates spheres with large overlapped areas (hence overall corridor size) between two neighboring spheres. The second is a Receding Horizon Corridors (RHC) strategy, where part of the previously generated corridor is reused in each replan. Together, these two designs enlarge the corridor spaces in accordance with the quadrotor's current state and hence allow the quadrotor to maneuver at high speeds. We benchmark our algorithm against other state-of-the-art planning methods to show its superiority in simulation. Comprehensive ablation studies are also conducted to show the necessity of the two designs. The proposed method is finally evaluated on an autonomous LiDAR-navigated quadrotor UAV in woods environments, achieving flight speeds over 13.7 m/s without any prior map of the environment or external localization facility.


翻译:四方是灵活的平台。 有了人类专家, 他们可以在杂乱的环境中执行极高速的飞行。 但是, 高速完全自主的飞行仍是一个重大挑战。 在这项工作中, 我们提出一个基于走廊限制的最低控制努力轨迹优化( MINCO) 框架的运动规划算法。 具体地说, 我们使用一系列重叠的域以代表环境的自由空间, 并提议两个新的设计, 使算法能够实时地规划高速的二次轨迹。 一个是以抽样为基础的走廊生成方法, 在两个相邻的空域之间产生有大面积重叠的区域( 整个走廊大小 ) 。 第二个是后退地平线走廊( RHC) 战略, 在每个重新规划中重新使用先前产生的走廊的一部分。 这两项设计共同根据 quadrotor 的当前状态扩大走廊空间, 从而允许二次轨迹以高速进行操作。 我们用其他状态的测算法来测定我们的算法, 在模拟中显示其优越性区域( 范围是整个走廊大小 ) 。 第二个是后退地走廊走廊( LAV ) 的外部环境最终评估了 13 。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月23日
Arxiv
0+阅读 · 2022年10月21日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员