Numerical optimization has become a popular approach to plan smooth motion trajectories for robots. However, when sharing space with humans, balancing properly safety, comfort and efficiency still remains challenging. This is notably the case because humans adapt their behavior to that of the robot, raising the need for intricate planning and prediction. In this paper, we propose a novel optimization-based motion planning algorithm, which generates robot motions, while simultaneously maximizing the human trajectory likelihood under a data-driven predictive model. Considering planning and prediction together allows us to formulate objective and constraint functions in the joint human-robot state space. Key to the approach are added latent space modifiers to a differentiable human predictive model based on a dedicated recurrent neural network. These modifiers allow to change the human prediction within motion optimization. We empirically evaluate our method using the publicly available MoGaze dataset. Our results indicate that the proposed framework outperforms current baselines for planning handover trajectories and avoiding collisions between a robot and a human. Our experiments demonstrate collaborative motion trajectories, where both, the human prediction and the robot plan, adapt to each other.
翻译:数字优化已成为一种为机器人规划平稳运动轨迹的流行方法。 但是,在与人类共享空间时,适当平衡安全、舒适和效率仍具有挑战性。 特别是因为人类行为适应机器人的行为,提高了对复杂规划和预测的需要。 在本文中,我们提出一种新的基于优化的动作规划算法,在数据驱动的预测模型下产生机器人动作,同时最大限度地增加人类轨迹的可能性。 共同考虑规划和预测,使我们能够在人类-机器人联合空间中制定目标和约束功能。 这种方法的关键是将潜在的空间修饰器添加到基于专门的经常性神经网络的不同人类预测模型中。 这些修饰器允许在运动优化中改变人类的预测。 我们用公开提供的MoGaze数据集对方法进行实验性评估。 我们的结果表明,拟议框架比目前规划移交轨迹和避免机器人与人类碰撞的基线要高。 我们的实验展示了合作运动轨迹, 在那里, 人类预测和机器人计划都相互适应。