This paper introduces methods and a novel toolbox that efficiently integrates any high-dimensional Neural Mass Models (NMMs) specified by two essential components. The first is the set of nonlinear Random Differential Equations of the dynamics of each neural mass. The second is the highly sparse three-dimensional Connectome Tensor (CT) that encodes the strength of the connections and the delays of information transfer along the axons of each connection. Semi-analytical integration of the RDE is done with the Local Linearization scheme for each neural mass model, which is the only scheme guaranteeing dynamical fidelity to the original continuous-time nonlinear dynamic. It also seamlessly allows modeling distributed delays CT with any level of complexity or realism, as shown by the Moore-Penrose diagram of the algorithm. This ease of implementation includes models with distributed-delay CTs. We achieve high computational efficiency by using a tensor representation of the model that leverages semi-analytic expressions to integrate the Random Differential Equations (RDEs) underlying the NMM. We discretized the state equation with Local Linearization via an algebraic formulation. This approach increases numerical integration speed and efficiency, a crucial aspect of large-scale NMM simulations. To illustrate the usefulness of the toolbox, we simulate both a single Zetterberg-Jansen-Rit (ZJR) cortical column and an interconnected population of such columns. These examples illustrate the consequence of modifying the CT in these models, especially by introducing distributed delays. We provide an open-source Matlab live script for the toolbox.
翻译:本文介绍一些方法和一个新工具框, 有效地整合由两个基本组成部分指定的任何高维神经质量模型( NMMM) 。 第一个是每个神经质量动态的非线性随机随机差异方程式。 第二个是高度稀少的三维连接器天线仪(CT), 它将连接的强度和信息传输的延误与每个连接的轴相混合。 RDE 的半分析整合与每个神经质量模型的本地线性化系统(NMMM), 这是保证对原始连续时间的显示直线性显示非线性流动的流向性流动的系统。 它也无缝地允许以任何复杂程度或现实性的形式模拟分布式的CT 。 这个执行的便利性包括分布式连接器连接的模型。 我们通过使用一个调频性模型来实现高的计算效率, 它利用半分析式模型来将 RD- 直线化的表达式模型( RDE) 来保证原始连续连续的显示非线性流值的运行性流动的运行过程。 我们通过模型将一个极化的直径直径化的直径直径直径直径、 将一个极的直径化的直径对立的磁的直线性平方数据序列结构图 。