Fekete's lemma is a well known result from combinatorial mathematics that shows the existence of a limit value related to super- and subadditive sequences of real numbers. In this paper, we analyze Fekete's lemma in view of the arithmetical hierarchy of real numbers by \emph{\citeauthor{ZhWe01}} and fit the results into an information theoretic-context. We introduce special sets associated to super- and subadditive sequences and prove their effective equivalence to \(\Sigma_1\) and \(\Pi_1\). Using methods from the theory established by \emph{\citeauthor{ZhWe01}}, we then show that the limit value emerging from Fekete's lemma is, in general, not a computable number. Furthermore, we characterize under which conditions the limit value can be computed and investigate the corresponding modulus of convergence. We close the paper by a discussion on how our findings affect common problems from information theory.
翻译:Fekete's lemma 是一组数学的一个众所周知的结果, 它表明存在与真实数字的超级和子相加序列有关的限值。 在本文中, 我们分析Fekete's lemma 的限值, 依据的是 \ emph=citetrachr\hWe01\\\\\\\\\\ 将结果纳入信息理论- 文字。 我们引入了与超级和子相加序列相关的特殊组, 并证明它们与\ (\\ sigma_ 1\\ ) 和\ (\\ Pi_ 1\ \ ) 的有效等值。 使用 \ emphyitetrachtr> hWe01\\\\\ 建立的理论方法, 我们然后显示 Fekete' lemma' lemma 产生的限值总的来说不是一个可比较的数字。 此外, 我们确定在什么条件下可以计算限制值, 并调查相应的趋同模式。 我们通过讨论我们的结论如何影响信息理论的共同问题。