The majorization-minimization (MM) principle is an extremely general framework for deriving optimization algorithms. It includes the expectation-maximization (EM) algorithm, proximal gradient algorithm, concave-convex procedure, quadratic lower bound algorithm, and proximal distance algorithm as special cases. Besides numerous applications in statistics, optimization, and imaging, the MM principle finds wide applications in large scale machine learning problems such as matrix completion, discriminant analysis, and nonnegative matrix factorizations. When applied to nonconvex optimization problems, MM algorithms enjoy the advantages of convexifying the objective function, separating variables, numerical stability, and ease of implementation. However, compared to the large body of literature on other optimization algorithms, the convergence analysis of MM algorithms is scattered and problem specific. This survey presents a unified treatment of the convergence of MM algorithms. With modern applications in mind, the results encompass non-smooth objective functions and non-asymptotic analysis.
翻译:主要-最小化(MM)原则是得出优化算法的一个极为笼统的框架,其中包括预期-最大算法、准渐变算法、concave-convex 程序、四角下下限算法和作为特殊情况的近似距离算法。除了统计、优化和成像方面的许多应用外,MM原则在大规模机器学习问题中发现了广泛的应用,如矩阵完成、差异分析和非负矩阵因子化。在应用到非对流化优化问题时,MM算法具有将目标功能融合、将变量、数字稳定性和执行的便利性加以区分的优势。然而,与其他优化算法的大量文献相比,MM算法的趋同分析是分散的,而且有特定的问题。这项调查对MM算算法的趋同作了统一处理。在考虑现代应用时,结果包括非对流客观功能和非抽取性分析。