We study the inverse medium scattering problem to reconstruct the unknown inhomogeneous medium from the far-field patterns of scattered waves. The inverse scattering problem is generally ill-posed and nonlinear, and the iterative optimization method is often adapted. A natural iterative approach to this problem is to place all available measurements and mappings into one long vector and mapping, respectively, and to iteratively solve the linearized large system equation using the Tikhonov regularization method, which is called the Levenberg-Marquardt scheme. However, this is computationally expensive because we must construct the larger system equations when the number of available measurements increases. In this paper, we propose two reconstruction algorithms based on the Kalman filter. One is the algorithm equivalent to the Levenberg-Marquardt scheme, and the other is inspired by the Extended Kalman Filter. For the algorithm derivation, we iteratively apply the Kalman filter to the linearized equation for our nonlinear equation. Our proposed algorithms sequentially update the state and the weight of the norm for the state space, which avoids the construction of a large system equation and retains the information of past updates. Finally, we provide numerical examples to demonstrate our proposed algorithms.
翻译:我们研究反向介质散射问题,从散落波的远野模式中重建未知的无异质介质。 反向散射问题一般是不正确和非线性, 而迭代优化方法经常被调整。 这个问题的自然迭代法是将所有可用的测量和绘图分别放置在一个长矢量和绘图器中, 并迭代地用称为Levenberg- Marquardt 的Tikhonov 正规化法( Levenberg- Marquardt ) 来解析线性大系统方程式。 但是, 这样做在计算上成本很高, 因为当可用测量量增加时, 我们必须构建更大的系统方程式。 在本文中, 我们建议基于卡尔曼过滤器的两种重建算法。 一种是等效算法, 与利文堡- Marqurdt 方案相当, 而另一种则是由扩展的卡尔曼过滤器启发的。 在算法中, 我们反复将卡尔曼过滤器应用于非线性方程式的线性方程式。 我们提议的算法按顺序更新了国家空间的状态和重量标准, 以避免构建大型系统方程式, 并保留过去更新的数值。 最后我们提供了数字更新。