With the commercial availability of mixed precision hardware, mixed precision GMRES-based iterative refinement schemes have emerged as popular approaches for solving sparse linear systems. Existing analyses of these approaches, however, are based on using full LU factorizations to construct preconditioners for use within GMRES in each refinement step. In practical applications, inexact preconditioning techniques, such as incomplete LU or sparse approximate inverses, are often used for performance reasons. In this work, we investigate the use of sparse approximate inverse preconditioners based on Frobenius norm minimization within GMRES-based iterative refinement. We analyze the computation of sparse approximate inverses in finite precision and derive constraints under which user-specified stopping criteria will be satisfied. We then analyze the behavior of and convergence constraints for a five-precision GMRES-based iterative refinement scheme that uses sparse approximate inverse preconditioning, which we call SPAI-GMRES-IR. Our numerical experiments confirm the theoretical analysis and illustrate the resulting tradeoffs between preconditioner sparsity and GMRES-IR convergence rate.
翻译:随着混合精密硬件的商业可得性,混合精密GMRES的混合精密迭代改进计划已成为解决稀有线性系统的流行方法,但是,目前对这些方法的分析是以使用全部LU因子法为基础,为每个改进步骤在GMRES内建立先决条件;在实际应用中,不精确的前提条件技术,如不完整LU或少许的反向技术,常常用于业绩方面的考虑;在这项工作中,我们调查在以Frobenius规范为基础的迭代改进中,使用少许的反向先决条件的情况;我们分析了有限精确度中少许的近似反差的计算方法,并找出了满足用户指定停止标准的制约因素;然后我们分析了基于五精准GMRES的迭代改进计划的行为和趋同限制,即我们称之为SPAI-GMRES-IR。我们的数字实验证实了理论分析,并说明了先决条件的宽度与GMRES-IR的趋同率之间的权衡。