Single-image room layout reconstruction aims to reconstruct the enclosed 3D structure of a room from a single image. Most previous work relies on the cuboid-shape prior. This paper considers a more general indoor assumption, i.e., the room layout consists of a single ceiling, a single floor, and several vertical walls. To this end, we first employ Convolutional Neural Networks to detect planes and vertical lines between adjacent walls. Meanwhile, estimating the 3D parameters for each plane. Then, a simple yet effective geometric reasoning method is adopted to achieve room layout reconstruction. Furthermore, we optimize the 3D plane parameters to reconstruct a geometrically consistent room layout between planes and lines. The experimental results on public datasets validate the effectiveness and efficiency of our method.
翻译:单图像室布局重建的目的是从一个图像中重建一个房间的封闭的 3D 结构。 先前的多数工作都依赖于以前的小块形状。 本文考虑了更一般的室内假设, 即房间布局由单一的天花板、 单一的地板和几面垂直墙组成。 为此, 我们首先使用革命神经网络来探测相邻墙间的飞机和垂直线。 同时, 估计每架飞机的3D 参数。 然后, 采用了简单而有效的几何推理法来实现房间布局重建。 此外, 我们优化了三维平面参数来重建飞机和线之间的几何一致的房间布局。 公共数据集的实验结果验证了我们方法的有效性和效率 。