Recent work in Vision-and-Language Navigation (VLN) has presented two environmental paradigms with differing realism -- the standard VLN setting built on topological environments where navigation is abstracted away, and the VLN-CE setting where agents must navigate continuous 3D environments using low-level actions. Despite sharing the high-level task and even the underlying instruction-path data, performance on VLN-CE lags behind VLN significantly. In this work, we explore this gap by transferring an agent from the abstract environment of VLN to the continuous environment of VLN-CE. We find that this sim-2-sim transfer is highly effective, improving over the prior state of the art in VLN-CE by +12% success rate. While this demonstrates the potential for this direction, the transfer does not fully retain the original performance of the agent in the abstract setting. We present a sequence of experiments to identify what differences result in performance degradation, providing clear directions for further improvement.
翻译:视觉和语言导航(VLN)最近的工作提出了两种环境范式,具有不同的现实性:一种是建立在抽象导航的地形环境中的标准VLN设置,另一种是VLN-CE设置,在这种设置中,各种物剂必须使用低层次的行动来持续3D环境。尽管分担了高级任务,甚至基本的指令-路径数据,但VLN-CE的性能明显落后于VLN。在这项工作中,我们通过将一个物剂从VLN的抽象环境转移到VLN-CE的连续环境来探索这一差距。我们发现,这种Sim-2-sim转移非常有效,比VLN-CE的艺术先前状态提高12%的成功率。这显示了这一方向的潜力,但这种转让并没有完全保留该物剂在抽象环境中的最初性能。我们提出一系列实验,以确定造成性能退化的原因,为进一步改进提供了明确的方向。