Point cloud completion aims to predict complete shape from its partial observation. Current approaches mainly consist of generation and refinement stages in a coarse-to-fine style. However, the generation stage often lacks robustness to tackle different incomplete variations, while the refinement stage blindly recovers point clouds without the semantic awareness. To tackle these challenges, we unify point cloud Completion by a generic Pretrain-Prompt-Predict paradigm, namely CP3. Inspired by prompting approaches from NLP, we creatively reinterpret point cloud generation and refinement as the prompting and predicting stages, respectively. Then, we introduce a concise self-supervised pretraining stage before prompting. It can effectively increase robustness of point cloud generation, by an Incompletion-Of-Incompletion (IOI) pretext task. Moreover, we develop a novel Semantic Conditional Refinement (SCR) network at the predicting stage. It can discriminatively modulate multi-scale refinement with the guidance of semantics. Finally, extensive experiments demonstrate that our CP3 outperforms the state-of-the-art methods with a large margin.
翻译:目前的方法主要包括以粗到粗的状态生成和精细的阶段来应对各种不完全的变异,而精细的阶段则在没有语义意识的情况下盲目地恢复点云。为了应对这些挑战,我们通过通用的先发制人-先发制人-先发制人模式,即CP3, 将点云完成率统一起来。我们借助于NLP的推介,创造性地重新解释点云的生成和精细,作为快速和预测阶段。然后,我们引入一个简单的自我监督的训练前阶段,然后进行提示。通过完成(IOI)的托辞令任务,它可以有效地提高点云生成的稳健性。此外,我们在预测阶段开发了一个新型的“先发制人-先发制人-先发制人-先发制人”的网络。它可以有区别性地调整多级精细的精细化,同时提供语义学指导。最后,广泛的实验表明我们的CP3在推动前期试验之前,通过一个大差幅化的状态方法。