This paper introduces a new acquisition function under the Bayesian active learning framework, namely BABA. It is motivated by previously well-established works BALD, and BatchBALD which capture the mutual information between the model parameters and the predictive outputs of the data. Our proposed measure, BABA, endeavors to quantify the normalized mutual information by approximating the stochasticity of predictive probabilities using Beta distributions. BABA outperforms the well-known family of acquisition functions, including BALD and BatchBALD. We demonstrate this by showing extensive experimental results obtained from MNIST and EMNIST datasets.
翻译:本文在巴伊西亚积极学习框架下引入了一种新的获取功能,即巴伊西亚积极学习框架下的获取功能,其动机是以前早已确立的BALD和BatchBALD,前者收集了数据模型参数和预测产出之间的相互信息。我们拟议的措施巴伊萨,即BABA努力通过使用贝塔分布的预测概率的近似性来量化标准化的相互信息。巴伊西亚积极学习比众所周知的获取功能类别,包括BALD和BatchBALD。我们通过展示从MNIST和EMNIST数据集获得的广泛实验结果来证明这一点。