We propose a new mapping tool for supervised and unsupervised analysis of multivariate binary data with multiple items, questions, or response variables. The mapping assumes an underlying proximity response function, where participants can have multiple reasons to disagree or say ``no'' to a question. The probability to endorse, or to agree with an item depends on an item specific parameter and the distance in a joint space between a point representing the item and a point representing the participant. The item specific parameter defines a circle in the joint space around the location of the item such that for participants positioned within the circle the probability is larger than 0.5. For map estimation, we develop and test an MM-algorithm in which the negative likelihood function is majorized with a weighted least squares function. The weighted least squares function can be minimized with standard algorithms for multidimensional unfolding, except that negative working dissimilarities may occur in the iterative process. To illustrate the new mapping, two empirical data sets are analyzed. The mappings are interpreted in detail and the unsupervised map is compared to a visualization based on correspondence analysis. In a Monte Carlo study, we test the performance of the algorithm in terms of recovery of population parameters and conclude that this recovery is adequate. A second Monte Carlo study investigates the predictive performance of the new mapping compared to a similar mapping with a monotone response function.
翻译:暂无翻译