A port-Hamiltonian (pH) system formulation is a geometrical notion used to formulate conservation laws for various physical systems. The distributed parameter port-Hamiltonian formulation models infinite dimensional Hamiltonian dynamical systems that have a non-zero energy flow through the boundaries. In this paper we propose a novel framework for discontinuous Galerkin (DG) discretizations of pH-systems. Linking DG methods with pH-systems gives rise to compatible structure preserving finite element discretizations along with flexibility in terms of geometry and function spaces of the variables involved. Moreover, the port-Hamiltonian formulation makes boundary ports explicit, which makes the choice of structure and power preserving numerical fluxes easier. We state the Discontinuous Finite Element Stokes-Dirac structure with a power preserving coupling between elements, which provides the mathematical framework for a large class of pH discontinuous Galerkin discretizations. We also provide an a priori error analysis for the port-Hamiltonian discontinuous Galerkin Finite Element Method (pH-DGFEM). The port-Hamiltonian discontinuous Galerkin finite element method is demonstrated for the scalar wave equation showing optimal rates of convergence.
翻译:港口- Hamiltonian 系统配制是一个用于为各种物理系统制定保护法律的几何概念。 分散参数的港口- Hamilton 配制模型无限的多元汉密尔顿动态系统, 这些系统在边界中流出的能量不为零。 我们在此文件中提议了一个用于PH系统不连续的Galerkin(DG)离散的新框架。 将DG方法与pH- 系统连接起来可以产生兼容的结构, 保存有限的元素离散, 以及所涉变量的几何和功能空间的灵活性。 此外, 港口- Hamiltonian 配制使边界港口清晰明确, 从而更容易选择结构和保持数字通量的结构和动力。 我们指出不连续的 Finitelement Stokes- Dirac 结构, 以及保持各元素之间不连续的电源连接。 这为大型 PH不连续的 Galkin 离散提供了数学框架。 我们还为港口- Haltonian 的Galterkin Elementalite 方法(pH- DGFImer EM) 展示了最佳凝固化的卡通度标准。