In this contribution, we extend the hybridization framework for the Hodge Laplacian (Awanou et al., Hybridization and postprocessing in finite element exterior calculus, 2023) to port-Hamiltonian systems. To this aim, a general dual field continuous Galerkin discretization is introduced, in which one variable is approximated via conforming finite element spaces, whereas the second is completely local. This scheme retains a discrete power balance and discrete conservation laws and is directly amenable to hybridization. The hybrid formulation is equivalent to the continuous Galerkin formulation and to a power preserving interconnection of port-Hamiltonian systems, thus providing a system theoretic interpretation of finite element assembly. The hybrid system can be efficiently solved using a static condensation procedure in discrete time. The size reduction achieved thanks to the hybridization is greater than the one obtained for the Hodge Laplacian as one field is completely discarded. Numerical experiments on the 3D wave and Maxwell equations show the equivalence of the continuous and hybrid formulation and the computational gain achieved by the latter.
翻译:在这一贡献中,我们将Hodge Laplacecian(Awanou等人,2023年外部微积分中有限元素的混合和后处理)的混合化框架扩大到港口-汉堡系统,为此,引入了一个通用的双外连续Galerkin离散法,其中一个变量通过符合有限元素空间相近,而第二个变量则是完全局部的。这个办法保留了离散功率平衡法和离散节法,并直接适用于混合化。混合配方相当于Galerkin的连续配方和保存港口-Hamiltonian系统互联的动力,从而为有限元素组装提供了一个系统理论解释。混合系统可以在离散时使用静态凝结程序有效解决。由于混合而实现的体积缩小大于Hodge Laplacecian作为一个领域所获得的一个领域被完全抛弃的变量。在3D波和Maxwell等式上的数值实验显示了连续和混合配制的等值以及后者的计算收益。