Image inpainting aims to fill the missing hole of the input. It is hard to solve this task efficiently when facing high-resolution images due to two reasons: (1) Large reception field needs to be handled for high-resolution image inpainting. (2) The general encoder and decoder network synthesizes many background pixels synchronously due to the form of the image matrix. In this paper, we try to break the above limitations for the first time thanks to the recent development of continuous implicit representation. In detail, we down-sample and encode the degraded image to produce the spatial-adaptive parameters for each spatial patch via an attentional Fast Fourier Convolution(FFC)-based parameter generation network. Then, we take these parameters as the weights and biases of a series of multi-layer perceptron(MLP), where the input is the encoded continuous coordinates and the output is the synthesized color value. Thanks to the proposed structure, we only encode the high-resolution image in a relatively low resolution for larger reception field capturing. Then, the continuous position encoding will be helpful to synthesize the photo-realistic high-frequency textures by re-sampling the coordinate in a higher resolution. Also, our framework enables us to query the coordinates of missing pixels only in parallel, yielding a more efficient solution than the previous methods. Experiments show that the proposed method achieves real-time performance on the 2048$\times$2048 images using a single GTX 2080 Ti GPU and can handle 4096$\times$4096 images, with much better performance than existing state-of-the-art methods visually and numerically. The code is available at: https://github.com/NiFangBaAGe/CoordFill.
翻译:映射中的图像旨在填补输入的缺失洞洞。 在面临高清晰度图像时, 很难高效地完成此项任务。 原因有二:(1) 需要为高清晰度图像油漆处理大型接收字段。 (2) 普通编码器和解码器网络由于图像矩阵的形式而同步合成许多背景像素。 在本文中, 由于最近不断开发的隐含代表, 我们试图首次打破上述限制 。 详细来说, 我们下调40 并编码退化的图像, 以便通过关注快速 Fourier Ticomliev( FFC) 的参数生成网络为每个空间补丁生成空间适应参数 。 然后, 我们将这些参数作为多个多层次的透视仪( MLP) 的权重和偏差。 输入是前编码的连续坐标, 输出是合成的颜色值值值值值值。 由于拟议的结构, 我们只能用一个相对低的分辨率解析度图像, $20 用于更大的接收字段 。 然后, 连续的位置编码将比高级的GLO- gental- disal- develrial exal ex ex ex ex commodel commodel commodel commodel commodel competion commotion commodel commotion commodel commodel commd commodel commod comm commmol commus</s>