Most virtual try-on research is motivated to serve the fashion business by generating images to demonstrate garments on studio models at a lower cost. However, virtual try-on should be a broader application that also allows customers to visualize garments on themselves using their own casual photos, known as in-the-wild try-on. Unfortunately, the existing methods, which achieve plausible results for studio try-on settings, perform poorly in the in-the-wild context. This is because these methods often require paired images (garment images paired with images of people wearing the same garment) for training. While such paired data is easy to collect from shopping websites for studio settings, it is difficult to obtain for in-the-wild scenes. In this work, we fill the gap by (1) introducing a StreetTryOn benchmark to support in-the-wild virtual try-on applications and (2) proposing a novel method to learn virtual try-on from a set of in-the-wild person images directly without requiring paired data. We tackle the unique challenges, including warping garments to more diverse human poses and rendering more complex backgrounds faithfully, by a novel DensePose warping correction method combined with diffusion-based conditional inpainting. Our experiments show competitive performance for standard studio try-on tasks and SOTA performance for street try-on and cross-domain try-on tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
22+阅读 · 2023年11月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员