One of the fundamental challenges in realizing the potential of legged robots is generating plans to traverse challenging terrains. Control actions must be carefully selected so the robot will not crash or slip. The high dimensionality of the joint space makes directly planning low-level actions from onboard perception difficult, and control stacks that do not consider the low-level mechanisms of the robot in planning are ill-suited to handle fine-grained obstacles. One method for dealing with this is selecting footstep locations based on terrain characteristics. However, incorporating robot dynamics into footstep planning requires significant computation, much more than in the quasi-static case. In this work, we present an LSTM-based planning framework that learns probability distributions over likely footstep locations using both terrain lookahead and the robot's dynamics, and leverages the LSTM's sequential nature to find footsteps in linear time. Our framework can also be used as a module to speed up sampling-based planners. We validate our approach on a simulated one-legged hopper over a variety of uneven terrains.
翻译:实现脚步机器人潜力的根本挑战之一是制定计划以穿越挑战性地形。 控制行动必须谨慎选择, 以使机器人不会崩溃或滑落。 联合空间的高度使得直接规划从机上感知的低层次行动困难重重, 不考虑机器人在规划中的低层次机制的控制堆不适于处理细小障碍。 处理的方法之一是根据地形特点选择脚步位置。 但是, 将机器人动态纳入脚步规划需要大量计算, 远比准静态情况要多。 在这项工作中, 我们提出了一个基于 LSTM 的规划框架, 利用地势外观和机器人的动态, 了解可能步脚步地点的概率分布, 并利用 LSTM 的顺序性质在线上寻找脚步。 我们的框架还可以用作模块, 加速取样规划者的速度。 我们验证了我们对各种不均匀地形的单脚型直升机的处理方法。