In this work, we present a federated version of the state-of-the-art Neural Collaborative Filtering (NCF) approach for item recommendations. The system, named FedNCF, enables learning without requiring users to disclose or transmit their raw data. Data localization preserves data privacy and complies with regulations such as the GDPR. Although federated learning enables model training without local data dissemination, the transmission of raw clients' updates raises additional privacy issues. To address this challenge, we incorporate a privacy-preserving aggregation method that satisfies the security requirements against an honest but curious entity. We argue theoretically and experimentally that existing aggregation algorithms are inconsistent with latent factor model updates. We propose an enhancement by decomposing the aggregation step into matrix factorization and neural network-based averaging. Experimental validation shows that FedNCF achieves comparable recommendation quality to the original NCF system, while our proposed aggregation leads to faster convergence compared to existing methods. We investigate the effectiveness of the federated recommender system and evaluate the privacy-preserving mechanism in terms of computational cost.
翻译:在这项工作中,我们为项目建议提出了一个最新的神经合作过滤(NCF)联合版本。这个名为FedNCF的系统使学习无需要求用户披露或传输原始数据。数据本地化保留了数据隐私,并符合GDPR等条例。虽然联合学习使得示范培训无需当地数据传播,但原始客户最新消息的传输带来了更多的隐私问题。为了应对这一挑战,我们采用了一种隐私保护汇总方法,满足了对诚实但好奇的实体的安全要求。我们从理论上和实验上认为,现有的聚合算法与潜在要素模型更新不一致。我们建议通过将汇总步骤分解为矩阵系数化和基于神经网络的均匀化来改进。实验性验证表明,FedNCF达到与原NCF系统相似的建议质量,而我们提议的汇总使得与现有方法的趋同速度更快。我们调查了联合推荐系统的效力,并评估了计算成本方面的隐私保护机制。