Autonomous robots can benefit greatly from human-provided semantic characterizations of uncertain task environments and states. However, the development of integrated strategies which let robots model, communicate, and act on such soft data remains challenging. Here, a framework is presented for active semantic sensing and planning in human-robot teams which addresses these gaps by formally combining the benefits of online sampling-based POMDP policies, multi-modal semantic interaction, and Bayesian data fusion. This approach lets humans opportunistically impose model structure and extend the range of semantic soft data in uncertain environments by sketching and labeling arbitrary landmarks across the environment. Dynamic updating of the environment while searching for a mobile target allows robotic agents to actively query humans for novel and relevant semantic data, thereby improving beliefs of unknown environments and target states for improved online planning. Target search simulations show significant improvements in time and belief state estimates required for interception versus conventional planning based solely on robotic sensing. Human subject studies demonstrate a average doubling in dynamic target capture rate compared to the lone robot case, employing reasoning over a range of user characteristics and interaction modalities. Video of interaction can be found at https://youtu.be/Eh-82ZJ1o4I.
翻译:自主机器人可以从人类提供的不确定任务环境和状态的语义特征中大大受益。然而,制定综合策略,让机器人能够建模、交流和根据这种软数据采取行动,仍然具有挑战性。在这里,提出一个框架,让人类机器人团队积极进行语义遥感和规划,通过正式结合基于在线取样的POMDP政策、多模式语义互动和贝叶西亚数据融合等惠益,解决这些差距。这种方法让人类在不确定环境中随机地强加模型结构并扩大语义软数据的范围,在环境中绘制图画并标出任意的地标。动态环境更新,同时寻找移动目标,允许机器人代理代理积极向人类查询新颖和相关语义数据,从而改进未知环境和目标状态的信念,以改进在线规划。目标搜索模拟显示时间和信仰方面的重大改进,即拦截所需的国家估计数与仅靠机器人遥感的常规规划。人类主题研究显示,与单人机器人案例相比,动态目标捕获率平均翻了一番,采用一系列用户特征和互动模式的推理。可找到Ang-E。