Inverse probability weighting (IPW) is a general tool in survey sampling and causal inference, used both in Horvitz-Thompson estimators, which normalize by the sample size, and Haj\'ek/self-normalized estimators, which normalize by the sum of the inverse probability weights. In this work we study a family of IPW estimators, first proposed by Trotter and Tukey in the context of Monte Carlo problems, that are normalized by an affine combination of these two terms. We show how selecting an estimator from this family in a data-dependent way to minimize asymptotic variance leads to an iterative procedure that converges to an estimator with connections to regression control methods. We refer to this estimator as an adaptively normalized estimator. For mean estimation in survey sampling, this estimator has asymptotic variance that is never worse than the Horvitz--Thompson or Haj\'ek estimators, and is smaller except in edge cases. Going further, we show that adaptive normalization can be used to propose improvements of the augmented IPW (AIPW) estimator, average treatment effect (ATE) estimators, and policy learning objectives. Appealingly, these proposals preserve both the asymptotic efficiency of AIPW and the regret bounds for policy learning with IPW objectives, and deliver consistent finite sample improvements in simulations for all three of mean estimation, ATE estimation, and policy learning.


翻译:反概率加权( IPW) 是调查抽样和因果抽样推断的一般工具, 用于 Horvitz- Thompson 测算器, 该测算器以样本大小为常态, 用于 Horvitz- Thompson 测算器, 和 Haj\'ek/ 自成常态的测算器, 该测算器以反概率加权数之和为常态。 在这项工作中, 我们研究了由Trotter和Tukey在蒙特卡洛问题中首次提议的 IPW 测算器系列, 这些测算器与这两个术语的趋同性结合, 我们展示了如何从这个家族中选取一个测算器, 以基于数据的方式, 以尽可能减少损耗差异的方式, 和Horvitz- Thoompson 测算器的测算器, 从而导致一个迭接合程序, 该测算器与回归控制方法的连接。 我们把这个测算器称为适应性测算器的测算器。 在调查抽样中, 该测算中, 该测算器的测算器的测算器的测算器的测算法, 和测算器的测算器的测算法的测算器的测算法, 和测算法的测算法的测算法的测算法的测算法的测算法的测算法, 和测算法的测算法的测算法, 的测算法性效果的测算法性效果的测算法性效果, 的测算法性效果的测算法性效果, 和测算法性能的测算法性能的测算法的测算法的测算法的测算法的测算法的测算法的测算, 的测算法的测算法的测算法的测算法, 和测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法的测算法, 和测算法的测算法的测算法的测算法性效果的测算法,

1
下载
关闭预览

相关内容

Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
50+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
4+阅读 · 2019年5月8日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
0+阅读 · 2021年8月12日
Arxiv
0+阅读 · 2021年8月12日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
4+阅读 · 2019年5月8日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员