We study the multivariate square-root lasso, a method for fitting the multivariate response (multi-task) linear regression model with dependent errors. This estimator minimizes the nuclear norm of the residual matrix plus a convex penalty. Unlike some existing methods for multivariate response linear regression, which require explicit estimates of the error covariance matrix or its inverse, the multivariate square-root lasso criterion implicitly accounts for error dependence and is convex. To justify the use of this estimator, we establish error bounds which illustrate that like the univariate square-root lasso, the multivariate square-root lasso is pivotal with respect to the unknown error covariance matrix. We propose a new algorithm to compute the estimator: a variation of the alternating direction method of multipliers algorithm; and discuss an accelerated first order algorithm which can be applied in certain cases. In both simulation studies and a genomic data application, we show that the multivariate square-root lasso can outperform more computationally intensive methods which estimate both the regression coefficient matrix and error precision matrix.
翻译:我们研究多变量方根 lasso, 这是一种将多变量反应( 多任务) 线性回归模型与依赖性错误相匹配的方法。 此估计值将剩余矩阵的核规范与直方曲线罚款相最小化。 与某些现有的多变量反应线性回归方法不同, 这些方法要求明确估计误差共变量矩阵或其反向, 多变量平方根 lasso 标准隐含了错误依赖性, 并且是 convex 。 为了证明使用此估计值的道理, 我们设置了错误界限, 以显示像单变量平方根 lasso 那样, 多变量平方根 lasso 对未知的误差变量矩阵具有关键作用。 我们提出一个新的算法, 来计算偏差值: 乘数算法的交替方向方法的变异性; 讨论在某些情况下可以应用的加速的第一顺序算法。 在模拟研究和基因组数据应用中, 我们显示多变量平方根 laso 能够超越更精确的计算性强度方法, 即估算回归系数矩阵和精确度矩阵。